Menggodok Data, Membangun “Credit Scoring”

Punya rekening bank, tapi saat mengajukan kartu kredit saja selalu ditolak? Di sini kamu masuk ke golongan underbanked. Di bawah underbanked, ada unbanked yang berarti kamu tidak punya rekening bank.

Dua golongan di atas selama ini “diasingkan” bank dan layanan jasa keuangan konvensional lainnya, meski memiliki potensi bisnis yang besar. Utilisasi segmen ini rendah dan belum bisa dimanfaatkan 111 bank yang beroperasi di Indonesia karena terlalu berisiko.

Menurut laporan termutakhir e-Conomy SEA 2019 yang disusun Google, Temasek, dan Bain & Company, ada 51% penduduk Indonesia yang masuk ke golongan unbanked; underbanked 26%; dan banked 23%.

Secara umum, di Asia Tenggara, 75% penduduk di Asia Tenggara masuk kategori underbanked dan unbanked. Mereka ini kurang terlayani (under-served) karena berbagai alasan.

Dari sisi lembaga keuangan, ada biaya tinggi untuk melayani mereka yang tidak sebanding dengan potensi pendapatan rendah dalam jangka menengah. Alasan lain termasuk riwayat kredit yang terbatas, tingkat tabungan rendah, dan “kesadaran terbatas” dalam hal asuransi atau investasi.

Benang merah di sini adalah inklusi. Bagaimana meningkatkan literasi masyarakat yang memilih untuk tidak tergabung dalam sistem perbankan formal untuk masuk ke ekosistem.

Alasan klasik bank untuk tidak menggarap dua segmen nasabah ini karena ketidaktersediaan data di BI Checking (kini SLIK). Dengan sistem perbankan yang didesain begitu eksklusif, hal ini memaksa bank untuk main aman. Jika laporan keuangan sedikit jelek, mereka langsung ditegur regulator.

Bank di Indonesia punya biaya dana (cost of fund) yang tinggi. Hal ini mengakibatkan tingginya bunga yang dibebankan ke nasabah. Margin bunga bersih (net interest margin/NIM) di negara ini tertinggi di Asia Tenggara, ada di level 4,69% pada Agustus 2019 menurut OJK. Bandingkan dengan NIM Singapura yang “hanya” di level 3,62%.

Potensi bisnis yang dibiarkan tak diambil begitu lama akhirnya dimanfaatkan para pemain fintech, baik lending maupun payment, yang mulai membuat bank berkeringat dingin.

Lihat bagaimana perkembangan Akulaku dan Kredivo, dua pemain fintech terbesar di sisi lending yang menawarkan kemudahan”kartu kredit digital”. Proses sepenuhnya dilakukan secara online dan dalam hitungan menit nasabah bisa langsung mendapatkan persetujuan.

Lalu GoPay, Ovo, dan Dana yang begitu cepat masuk ke berbagai daerah dengan berbagai variasi produk.

Yang perlu ditekankan di sini adalah seluruh perusahaan yang disebutkan di atas adalah anak baru dengan lama operasional kurang dari lima tahun. Mereka lebih berani menggarap segmen unbanked dan unbankable ketimbang mereka yang lebih lama malang melintang di industri.

Cara bank melakukan credit scoring

Cara bank menganalisis nasabah bisa dikatakan cukup konservatif. Pedomannya menggunakan analisis 5C dengan prinsip 5P. 5C meliputi character, capacity, capital, condition, dan collateral. Sementara 5P adalah personality, purpose, prospect, payment, dan party.

Setiap mengajukan kredit ke bank, apapun jenis produknya, prosesnya mensyaratkan SLIK/Sistem Layanan Informasi Keuangan (dulu bernama BI Checking atau SID (Sistem Informasi Debitur) sebagai penentu kelayakan calon debitur.

SLIK dapat diakses 24/7 secara online dan offline oleh lembaga keuangan, baik bank dan nonbank, asal terdaftar sebagai anggota Biro Informasi Kredit (disebut Lembaga Pengelola Informasi Perkreditan/LPIP). Di dalam SLIK terdapat informasi debitur dan fasilitas kreditnya yang dipertukarkan ke sesama lembaga keuangan.

Nasabah punya skor kredit dari catatan kolektabilitasnya, dihitung dari 1 sampai 5. Semakin kecil skornya semakin besar potensi aplikasi terima. Bila masuk skor 3, 4, dan 5 otomatis ia akan ditolak karena masuk ke daftar hitam. Orang yang tidak memiliki riwayat kredit sama sekali termasuk dalam jajaran yang otomatis ditolak.

Mengingat bank hanya mengambil segmen bankable yang punya riwayat kredit, sumber data yang digunakan lebih banyak mengambil dari data kredit plus data lain untuk memperkuat skoring kredit.

Beda halnya dengan  startup fintech. Karena nasabahnya belum tentu punya data kredit yang mencukupi, startup fintech akan mengandalkan data lain atau disebut data alternatif untuk menghasilkan skoring kreditnya.

“Maka risk appetite dalam menggunakan credit scoring bisa saja berbeda, apakah lebih risk tolerance atau tidak, dan ini tergantung dari masing-masing kebutuhannya,” ujar Direktur Utama Pefindo Biro Kredit Yohanes Arts Abimanyu (7/11).

Pertanyaan yang kemudian timbul adalah apakah analisis kredit yang selama ini dipakai bank sepenuhnya berkualitas? Jawabannya bervariasi, tergantung sudut pandang yang dipakai.

Menurut Co-Founder dan CEO Fineoz Anis Radianis, salah satu layanan solusi risiko kredit berbasis AI, kriteria kualitas primer skor kredit ada tiga macam. Pertama, tingkat akurasi skor kredit dalam memilih calon nasabah yang baik dan buruk. Kedua, model yang dinamis mengikuti perkembangan terbaru, dan skor kredit yang tidak hanya mengurasi risiko tapi mampu memaksimalkan profit.

Kualitas primer ini sangat penting karena bisa menentukan keberlangsungan hidup lembaga keuangan dalam menjalankan bisnisnya.

Di Indonesia, sayangnya skor kredit masih mengandalkan dari internal yang secara fundamental punya banyak kelemahan. Misalnya, dalam memilah nasabah yang mampu bayar utang, masih menggunakan pendekatan tradisional statistik yang sangat tidak akurat, tidak dinamis, dan kurang menguntungkan.

Secara umum, penggunaan data kredit dalam pembuatan skor kredit akan memiliki kualitas yang lebih baik jika dibandingkan dengan pakai data alternatif.

“Kenapa masih tetap menggunakan pendekatan tradisional? Karena mudah untuk dijelaskan, dan sederhana. Jadi ada beberapa lembaga keuangan yang menganggap kualitas skor kredit mereka sudah baik,” terang Anis kepada DailySocial (20/11).

Hasil akhir dengan pendekatan ini memang benar-benar bisa mengurangi tingkat risiko gagal bayar. Meskipun demikian, hal ini harus dibayar dengan banyaknya penolakan calon nasabah karena bank lebih memilih main aman.

Belum lagi kualitas sekunder seperti tingkat kecepatan. Banyak lembaga keuangan yang membutuhkan waktu berhari-hari untuk proses underwriting. Memang sudah ada pemain yang membuat skor kredit dalam hitungan menit, tapi kualitas primer dalam memilah baik atau buruk masih dengan pendekatan lama.

“Bank bisa pakai model scoring kredit yang dikalibrasi setahun sekali atau dua kali, sebab dalam setahun ada banyak hal-hal baru yang bisa terjadi untuk memaksimalkan profit mereka dengan menggarap calon nasabah yang sebenarnya qualified,” tambahnya.

Bank memang tidak bisa sedinamis startup fintech, namun tidak menutup kemungkinan untuk berkolaborasi dengan tetap taat ke asas prudent. Hal ini bisa dilihat dengan berbagai kolaborasi dalam penyaluran kredit produktif untuk usaha mikro dan terdaftar sebagai peminjam fintech.

Strategi tersebut memperlihatkan bank memercayakan cara dan kualitas skor kredit di startup fintech. Mereka ingin memperbesar penyaluran dana kredit, dengan memperkecil risiko gagal bayar karena penyaluran ini tercatat di luar buku akuntansi mereka.

Pada akhirnya bank harus tetap menjalankan fungsinya sebagai intermediary, menghimpun dana dari masyarakat surplus dan menyalurkan lagi ke masyarakat defisit (memerlukan pembiayaan dari bank).

Salah satu bank yang DailySocial hubungi adalah BCA. EVP Secretariat & Corporate Communication BCA Hera F Haryn menjelaskan, skor kredit yang dipakai BCA masih menggunakan data-data yang terdapat di internal BCA, seperti data demografi debitur dan transaksi.

“Sedangkan untuk teknik pembuatan scoring menggunakan dua cara, yakni statistic logistic regression dan mulai menggunakan machine learning,” katanya (14/11).

Regresi logistik adalah salah satu model statistik populer yang digunakan untuk klasifikasi biner, prediksi jenis ini atau itu, ya atau tidak, A atau B, dan lain-lain. Dia juga dapat digunakan untuk klasifikasi multiclass.

BCA merealisasikan solusi LC Automize, bersama startup AI asal Singapura 6Estates, untuk mengotomasi dokumen manual dan pemeriksaan kepatuhan berdasarkan aturan internasional dan standar internasional saat analisis dokumen LC (letter of credit), dengan menggabungkan AI dan otomatisasi proses robotic untuk bisnis trade finance.

Cara tersebut diharapkan dapat mengurangi waktu penyelesaian untuk memroses setiap aplikasi yang masuk. BCA juga dapat mengembangkan bisnisnya secara eksponensial tanpa menghadapi masalah skalabilitas.

Ini masih tahap awal implementasi machine learning di dalam struktur bisnis BCA. Kemungkinan besar LC Automize akan diteruskan ke lini lainnya.

Cara fintech membangun skor kredit

Pada dasarnya, semua perusahaan, terlepas bergerak di fintech atau tidak, bisa mengumpulkan data nasabah, entah online atau offline, untuk dimanfaatkan kembali ke berbagai tujuan. Salah satunya, membangun sistem analisis kredit.

Pemahaman ini bisa menjadi bekal bahwa semua perusahaan punya kapabilitas untuk punya sistem skor kredit mandiri, asal memiliki teknologi dan expertise.

Cara awal Gojek atau Traveloka merilis produk keuangan, semacam PayLater, juga dimulai dari mengumpulkan data kebiasaan konsumen yang dipupuk perlahan-lahan sampai akhirnya bisa diutilisasi untuk dikembangkan lebih lanjut ke sektor keuangan.

Sementara startup fintech lending lebih banyak membangun skor kreditnya dengan data lain yang belum ada di biro kredit. Sebelum tersandung kasus, awalnya pemain bisa mengakses berbagai data di smartphone calon debitur.

Kini OJK membatasi data digital yang bisa diakses dari smartphone adalah kamera, mikrofon, dan lokasi. Ketiganya dianggap paling relevan dan diperlukan perusahaan fintech lending dalam mengenali calon nasabah.

Bagi Tongdun, platform inovasi keuangan digital Tiongkok untuk skor kredit yang sudah terdaftar di OJK, tiga jenis data ini sebenarnya masih dianggap kurang untuk mendapatkan data mengenai kebiasaan nasabah. Bagi startup seperti mereka, poin intinya adalah ingin melihat secara holistik, dari berbagai sisi, lewat sebanyak mungkin data untuk menghasilkan analisis kredit yang akurat.

Oleh karena itu, perusahaan tengah berdiskusi dengan PLN, BPJS, Dukcapil, Ditjen Pajak, dan perusahaan telekomunikasi untuk mengutilisasi data mereka secara mendalam untuk kebutuhan analisis. Selama ini perbankan belum sepenuhnya memanfaatkan data-data dasar tersebut.

Director of Consulting and Solution Tongdun Suhardiman Agung menjelaskan, jejak digital di Indonesia belum tersebar secara merata, masih terpusat di kota besar saja. Dia mencontohkan, tagihan listrik PLN tergolong data dasar yang bisa memberikan gambaran tentang keuangan seseorang.

Dari situ juga bisa tergambar bagaimana memverifikasi alamat dengan melihat ID pelanggan PLN mereka, untuk memastikan mereka bukan penipu. Melihat seperti apa latar belakang ekonomi cukup dengan memerhatikan konsumsi listriknya. Misalnya nasabah berjualan dengan omzet sekian, maka konsumsi listriknya harus sesuai prediksi.

“Indonesia menarik karena ada banyak SME, ekonomi informalnya besar. Tapi tantangannya bagaimana kita bisa tahu warung kaki lima keuangannya bagus atau tidak. Caranya dengan memanfaatkan data offline untuk dianalisis dengan machine learning,” terang Suhardiman kepada DailySocial (6/11).

Sementara ini Tongdun masih memanfaatkan data digital untuk membantu mitra dalam analisis risiko, tapi semuanya harus melalui perizinan nasabah. Nasabah juga harus sadar mereka memberikan akses data, entah itu dari akun Facebook atau akun e-commerce untuk memperoleh kredit.

Startup fintech yang niche, seperti Fineoz dan Tongdun, saling berlomba memberikan kecepatan analisis risiko dengan teknologi AI, machine learningcomputing platforms, dan core technologies yang dikombinasi dengan API dan cloud computing.

Anis menjelaskan, tidak melulu punya banyak data itu selalu baik karena menurutnya kuantitas sangat jauh berbeda dengan kualitas. Semakin besar kuantitas data tidak menjamin semakin baik kualitas analisis dan keputusan kredit yang dihasilkan.

“Fineoz fokus meningkatkan kualitas keputusan kredit. Kami tidak menafikan pentingnya sumber data yang banyak. Akan tetapi dengan teknologi AI segala keterbatasan data bisa diatasi dengan lebih mudah.”

Fineoz sendiri sudah mengolah hampir 3,5 juta data nasabah melalui beberapa kerja sama strategis. Jenis data kredit sangat beragam, termasuk data kredit komersial (invoice financing, seller financing, merchant financing, dan lain-lain) dan kredit konsumsi (kredit motor, mobil, KTA, dan payday loan).

Tak mau kalah, Pefindo Biro Kredit (PBK) mengumpulkan data kredit dari berbagai sumber. Mulai dari SID BI, SLIK OJK, lembaga keuangan yang menjadi anggota PBK, termasuk koperasi, fintech p2p lending, dan lembaga non keuangan seperti retailer.

Mereka juga ekerja sama dengan institusi lainnya untuk mengakses data non kredit, seperti BPJS Ketenagakerjaan, Taspen, identitas pajak, data pailit, wanprestasi dari putusan Mahkamah Agung, data emiten dari BEI, dan data peringkat perusahaan dari Pemeringkat Efek Indonesia.

Yohanes menyebut PBK tercatat memilki data kredit sebesar 91 juta data individu dan 500 ribu data perusahaan. Agar seluruh data ini bisa dimanfaatkan dengan sebaik-baiknya, perusahaan terus melakukan pengembangan atas akurasi data dan metodologi dari skoring kredit PBK.

“Selain itu kami berencana untuk mengembangkan alternatif skoring kredit untuk memenuhi masyarakat yang masih unbanked atau underserved. Di samping itu, tidak menutup kemungkinan mengembangkan AI.”

Masa depan skor kredit di Indonesia

Lembaga keuangan dan fintech tidak bisa selamanya berjalan sendiri-sendiri. Prudent-nya bank saat menyalurkan pinjaman dan dinamisnya fintech dalam mengolah data untuk analisis risiko menjadi perpaduan yang pas untuk menggarap nasabah unbanked dan unbankable.

Tak heran jika semakin banyak lembaga keuangan, termasuk layanan p2p lending, bekerja sama dengan perusahaan sejenis Tongdun dan Fineoz untuk membantu mereka menganalisis nasabah potensial dari berbagai angle.

Yang terbaru, Bank Permata menjadi lender institusi terbesar di Kredivo. Bank menyalurkan hingga Rp1 triliun untuk disalurkan kembali oleh perusahaan.

Keputusan bank menaruh dana sebesar itu pasti bukan keputusan mudah. Startup seperti Kredivo harus punya standarisasi sistem manajemen risiko yang setara dengan bank.

Pada Senin (2/12), Pefindo Biro Kredit berkolaborasi dengan Fineoz untuk mengembangkan informasi perkreditan berupa alternatif skoring melalui pemanfaatan data alternatif.

“Kita kolaborasi penggunaan data alternatif, supaya cakupan masyarakat unbanked untuk scoring kredit dan akses keuangan bisa lebih besar,” tutur Anis.

Asosiasi Fintech Pendanaan Bersama Indonesia (AFPI) juga merilis pusat data Fintech Data Center (FDC) untuk mempermudah pemain p2p melakukan penilaian kredit. Fungsinya sama dengan BI Checking dan SLIK dengan semangat menghindari potensi gagal bayar, penipuan, dan penyaluran kredit yang berlebihan.

FDC telah terhubung dengan BI Checking dan SLIK. Nantinya kemitraan ini akan bertambah dengan pihak lain, termasuk BPJS Kesehatan dan Ketenagakerjaan, asuransi, multifinance, perbankan, dan pasar modal.

Suhardiman menuturkan, kemampuan pemain fintech yang fokus pada analisis kredit tentunya punya nilai lebih. Investasi teknologi dan expertise yang harus digelontorkan bukanlah harga murah.

“Kami lebih seperti data aggregator, terkoneksi dengan berbagai sumber data. Terlebih itu, kita punya expertise khusus di bidang ini. Pemain fintech atau bank belum tentu punya exposure seperti kita,” ujarnya.

Saat ini layer pertama yang paling terbantu dengan kehadiran pemain skor kredit adalah perbankan. Layer berikutnya akan lintas industri. Suhardiman mencontohkan, di Tiongkok, utilisasi analisis kredit sangat advance. Di sana, data seperti ini dipakai perusahaan logistik untuk menganalisis status pengantaran dan profiling pengemudi.

Perusahaan asuransi di Tiongkok juga memanfaatkan skor kredit untuk pembayaran klaim sebagai tindakan mencegah potensi fraud.

“Teknologi yang kami bawa ke Indonesia dari Tiongkok masih sebagian kecil. Belum tentu semuanya bisa kami bawa karena menyesuaikan kebiasaan orang sini dan butuh personalisasi.”

Hal ini bisa menjadi gambaran besar bahwa demand akan kebutuhan analisis kredit akan semakin tinggi di Indonesia.

Salah satu pemain baru yang siap tancap gas adalah CekAja. Awalnya CekAja adalah platform agregator produk finansial, kemudian mereka segera merambah bisnis skor kredit bernama CekSkor.

Produk yang akan dirilis pada awal tahun depan ini adalah realisasi akuisisi yang dilakukan CekAja terhadap id/x untuk membantu proses skor bersama Experian yang sudah berpengalangan di bidang yang sama. Experian adalah satu dari tiga perusahaan credit scoring terbesar di dunia, bersama Equifax dan Transunion.

AFPI Bangun Pusat Data Fintech Demi Cegah Kredit Macet

Asosiasi Fintech Pendanaan Bersama Indonesia (AFPI) merilis pusat data Fintech Data Center (FDC) untuk mempermudah penyedia layanan p2p dalam melakukan credit assessment saat menyalurkan kredit. FDC memiliki kesamaan fungsi dengan BI Checking dari Bank Indonesia dan SLIK dari OJK. Perilisan FDC sekaligus bersamaan dengan hari jadi AFPI yang pertama.

Ketua Umum AFPI Adrian Gunadi menerangkan, tujuan dibentuknya FDC adalah membuat data para anggota AFPI lebih terintegrasi. Hal ini sekaligus memperjelas peran dan fungsi AFPI sebagai self regulatory organization yang mewadahi industri fintech p2p lending.

FDC juga memastikan industri p2p lending di Indonesia lebih sehat karena menghindari potensi kredit macet, penipuan, dan penyaluran kredit yang berlebihan. Untuk itu AFPI mewajibkan seluruh penyelenggara yang terdaftar di bawah OJK untuk menyerahkan data pelanggan untuk dimasukkan ke data center tersebut.

“Setiap ada borrower atau peminjam yang mau ambil pinjaman, penyelenggara wajib cek data mereka di FDC. Jika peminjam pernah bermasalah atau tidaknya, baru setelah itu baru ambil keputusan. Ini wajib dilakukan oleh penyelenggara,” terangnya, Senin (11/11).

Adapun data nasabah yang dimasukkan dan bisa diakses di data center antara lain NPWP, KTP, dan kolektabilitas kredit. Nama penyelenggara dirahasiakan demi kepentingan bersama.

Adrian mencontohkan, saat ini ada 15 perusahaan yang berpartisipasi dalam uji coba FDC. Beberapa nama di antaranya adalah Amartha, Danamas, Dompet Kilat, Finmas, Investree, Kimo, KlikACC, KoinWorks, Kredit Pintar, KTA Kilat, Maucash, Modalku, Taralite, Tokomodal, dan UangTeman.

Dari situ ada beberapa statistik yang berhasil dikumpulkan, misalnya borrower individu yang meminjam lebih dari satu penyelenggara sekitar 800 ribu orang. Angka tersebut didapat dari pengurangan jumlah borrower 2,9 juta orang dan jumlah borrower unik 2,1 juta orang.

Begitupun untuk peminjam dari skala perusahaan. Mereka yang meminjam di lebih dari satu penyelenggara ada 3 ribuan perusahaan. Angka tersebut diambil dari pengurangan jumlah borrower 19.826 dengan borrower unik sebesar 16.129.

Dari data tersebut diperoleh data seperti ada yang meminjam di 73 penyelenggara namun gagal bayar di 21 penyelenggara atau meminjam ke 53 penyelenggara, tapi gagal bayar di 49 penyelenggara. Hal ini diharapkan bisa diantisipasi lebih baik lagi.

Tentu saja bukan berarti pinjam di lebih dari satu perusahaan selalu buruk. FDC mencatat ada satu peminjam yang telah meminjam hingga 111 kali tapi tidak memiliki kredit macet sama sekali.

Perkaya data dari sumber lain

Saat ini, seluruh data nasabah wajib disampaikan penyelenggara setiap hari menjelang akhir hari ke dua regulator, yakni pusat Pusdafil OJK dan FDC AFPI. Setelah itu data yang persis sama akan direkonsiliasi di OJK.

Berikutnya, para penyelenggara diwajibkan untuk mengecek data di FDC, berbasis situs, sebelum memberikan pinjaman ke peminjam. Di sini diharapkan dapat menghindari risiko kredit macet dan potensi penipuan.

Adrian menjelaskan, untuk menjaga data-data tersebut tidak disalahgunakan oleh penyelenggara, OJK dan AFPI hanya akan memberi izin pengecekan data bila data tersebut memang tengah mengajukan pinjaman atau tengah dalam proses peminjaman.

Bila ada pelanggaran, asosiasi tidak segan-segan mencabut akses FDC maupun mencabut keanggotaan. “Di luar dua alasan tersebut, tidak boleh melakukan pengecekan. Apabila terbukti melakukan, aksesnya kami cabut dan tidak bisa jadi anggota AFPI lagi.”

Asosiasi akan mewajibkan seluruh penyelenggara yang terdaftar di bawah OJK untuk menyerahkan data nasabah paling lambat sampai akhir November 2019. OJK mencatat ada 144 penyelenggara yang terdaftar. “Kalau belum ada sampai akhir November, ya kita akan berikan warning.”

Mengingat seluruh data yang diinput menjelang akhir hari setiap harinya, alhasil data yang diakses penyelenggara tidaklah real time. Dia menyebut ke depannya, asosiasi akan mempersiapkan FDC agar dapat menyajikan data secara real time, paling lambat pada kuartal pertama 2020 mendatang.

Berikutnya FDC akan dilengkapi dengan sumber data dari pihak lain, seperti BPJS Kesehatan dan Ketenagakerjaan, asuransi, multifinance, perbankan, dan pasar modal. Saat ini FDC dapat diintegrasikan dengan BI Checking dan SLIK.

UangTeman Segera Buka Kembali Penyaluran Kredit, Siapkan Produk Syariah

Di akhir tahun 2018, platform pinjaman online UangTeman (PT Digital Alpha Indonesia) menghentikan penyaluran kredit secara terencana di 13 kota selain Jabodetabek. Mulai akhir Maret 2019, proses disbursement akan kembali dibuka secara bertahap, mulai di 5 kota terlebih dahulu.

Kepada DailySocial, SVP Corporate Affairs UangTeman Adrian Dosiwoda mengungkapkan, penghentian sementara tersebut merupakan bagian dari rencana perusahaan. Disebutkan penerapan credit scoring yang selama ini memanfaatkan data pelanggan ponsel dianggap sudah tidak sesuai lagi dan dinilai mengganggu privasi pengguna.

“Dengan alasan itulah akhirnya kami terpaksa untuk menghentikan proses disbursement di 13 kota yang secara langsung mempengaruhi portofolio bisnis kami hingga 60%. Namun setelah semua proses kami sesuaikan kembali kami optimis akhir Maret 2019 disbursement akan kami buka kembali,” kata Adrian.

Pasca pembukaan kembali layanan di luar Jabodetabek, perusahaan akan menerapkan proses automated credit scoring yang diklaim lebih akurat dan meminimalisir proses pengecekan manual untuk pemberian pinjaman.

Dalam proses pengecekan di awal tersebut, sejumlah langkah terdigitalisasi, seperti E-KYC dan tandatangan digital bakal diaplikasikan.

“Untuk proses survei tetap kami lakukan untuk kasus tertentu. Namun bagi mereka yang memiliki track record dan rekam kredit yang baik bisa langsung mendaftarkan tanpa melalui survei,” kata Adrian.

Sementara untuk memudahkan proses pinjaman bagi borrower yang memiliki portofolio yang baik, UangTeman juga akan merilis fitur Virtual Credit Line. Dengan fitur ini, pelanggan yang memiliki pagu cukup besar bisa mengambil kreditnya secara bertahap atau parsial tanpa harus mengembalikan pinjaman sebelumnya yang sedang berjalan.

Untuk mendukung rencana-rencana tahun ini, UangTeman berharap bisa menyelesaikan penggalangan dana lanjutan yang dijadwalkan difinalisasi pada akhir Maret ini.

Sebelumnya UangTeman memperoleh pendanaan Seri A sebesar $12 juta pada Agustus 2017 lalu. Investor yang terlibat termasuk K2 Venture Capital dan Draper Associates.

“Kita juga memiliki rencana untuk menambah tim, di antaranya adalah tim IT, human capital hingga marketing. Tujuannya tentu saja untuk menambah jumlah pengguna baru. Di UangTeman sendiri sebagian besar borrower adalah repeat borrower,” kata Adrian.

Produk syariah di Q4

Untuk memenuhi kebutuhan konsumen, khususnya dari kalangan UKM, UangTeman juga berencana merilis produk syariah di kuartal keempat tahun ini. Nantinya penjual online (online merchant) yang memiliki usaha di berbagai layanan marketplace bisa mengajukan pinjaman produktif berbasis syariah.

“UangTeman sendiri selama ini sifatnya adalah pinjaman konvensional. Kenapa pada akhirnya kita masuk ke pasar syariah agar bisa fokus ke pembiayaan produktif. Berbeda dengan cash loan, di syariah akadnya adalah sharing profit modelnya, sehingga harus diberikan kepada pengguna yang memiliki usaha,” kata Adrian.

Application Information Will Show Up Here

Bfarm Develops New System to Help Livestock Trading

Bfarm’s main objective is to facilitate farmers to have access for market and information. They started as offline business and now a startup providing ads portal for livestock products; rabbit, cow, chicken, fish, and many more.

The project established since November 2017 and prepared to have some solutions. They offer a marketplace for certified livestock products, livestock sales, funding access, and technical problem support with technology.

The first two solutions are; Bfarm is now accessible from bfarm.id. There is listing feature of various livestock products, including information transfer for certified farmers. Furthermore, potential customers can contact and submit offers through provided feature.

“We currently have 3H program (Healthy, Happy & Humane) Certified Partner, a free certification for small-scale farmers to guarantee consumers the livestock products are healthy, animals aren’t stressed and are treated properly. Certified farmers in our program will get priority for sales and marketing push,” Bfarm’s CEO, Fajar Fachruddin said.

Another ongoing product is a bulk/trade solution connecting small-scale sellers with large-scale buyers. It’s expected to provide opportunities for sellers to connect with larger markets and consumers.

“In 2018, with the trade program, we’re able to distribute 1000 livestock per year connecting supply without long-term intermediate. We believe this number will keep increasing, with the other features needed by farmers. It has great potential in the future to contribute for economy mobility and change the livestock trading pattern in Indonesia,” Fachruddin said.

Credit Scoring for farmers

One of Bfarm innovation plans is Bfund. A solution that allows Bfarm to give credit scoring to all farmers through technology.

Bfund tech scoring works by collecting farmers data, run validation, and putting into AI model to produce risk predictions. It’ll later be submitted to the potential investors, such as BMT or cooperatives.

“Prediction model creation starts from sample profile data collection of SMEs having smooth or jamming payment, determines related variables, builds and trains the prediction model in case there’s a new data, it can predict the risk potential,” he added.

In 2019, Bfarm plans to focus on merger and simplification of credit scoring and marketplace service portal. In addition, Bfarm will try to run the 3H certification program to make more benefits for Indonesian farmers.


Original article is in Indonesian, translated by Kristin Siagian

Bfarm Kembangkan Sistem untuk Bantu Pasarkan Hasil Ternak

Membantu peternak untuk lebih mudah mendapatkan akses informasi dan pasar adalah tujuan dari Bfarm. Startup yang berangkat dari bisnis offline ini menyajikan portal iklan yang menampilkan daftar produk peternakan; mulai dari kelinci, sapi, ayam, ikan dan lainnya.

Proyek yang dimulai sejak November 2017 ini disiapkan untuk memiliki beberapa lini solusi. Solusi yang mereka tawarkan adalah marketplace yang menawarkan produk peternakan tersertifikasi, penjualan hasil-hasil peternakan, mempermudah peternak mendapatkan akses permodalan, dan pengentasan masalah teknis beternak dengan teknologi.

Dua solusi pertama, marketplace dan penjualan hasil ternak sudah berjalan, sementara dua lainnya masih dalam tahap pengembangan.

Solusi marketplace dari Bfarm saat ini sudah bisa diakses melalui situs bfarm.id. Terdapat fitur listing iklan berbagai macam produk peternakan, termasuk transfer informasi untuk peternak yang tersertifikasi. Selanjutnya calon pembeli bisa menghubungi dan mengajukan penawaran melalui fitur yang disediakan.

“Kami saat ini memiliki program 3H (Healthy, Happy & Humane) Certified Partner, program sertifikasi gratis bagi peternak skala kecil untuk menjamin konsumen agar hewan ternak yang dijual memenuhi standar kesehatan, hewan tidak stres dan diperlakukan secara layak. Peternak yang tersertifikasi program kami akan mendapatkan prioritas untuk penjualan dan marketing push,” jelas CEO Bfarm Fajar Fachruddin.

Produk selanjutnya yang sudah berjalan di Bfarm adalah solusi perdagangan bulk/trade yang menghubungkan penjual partai kecil dan pembeli partai besar. Solusi ini diharapkan memberikan peluang bagi penjual untuk terhubung dengan pasar dan konsumen yang lebih besar.

“Tahun 2018 dengan program trade kami mampu menyalurkan 1000 hewan ternak per tahun mempertemukan suplay dengan tanpa perantara yang panjang. Kami yakin jumlah ini akan terus meningkat, ditambah dengan fitur layanan kami yang lain yang sangat dibutuhkan oleh peternak. Ke depannya berpotensi besar berkontribusi untuk kemajuan perekonomian rakyat dan mengubah pola perdagangan ternak di Indonesia,” terang Fajar.

Credit scoring bagi para peternak

Salah satu yang masuk dalam rencana inovasi Bfarm adalah Bfund. Sebuah solusi yang memungkinkan pihak Bfarm memberikan credit scoring kepada setiap peternak dengan bantuan teknologi.

Teknologi scoring Bfund bekerja dengan mengumpulkan data-data peternak yang ada, kemudian divalidasi dan dimasukkan ke dalam model AI untuk menghasilkan prediksi risiko. Prediksi ini nantinya yang disampaikan ke investor potensial seperti BMT atau koperasi.

“Pembentukan model prediksi dimulai dari pengumpulan data sample profile UKM yang memiliki pola pembayaran lancar dan macet, lalu ditentukan variable yang memengaruhinya, dibentuk juga dilatih model prediksinya sehingga saat ada data baru masuk model prediksi bisa mengeluarkan estimasi potensi risiko,” imbuh Fajar.

Rencananya Bfarm tahun 2019 ini akan fokus pada penggabungan dan penyederhanaan portal layanan credit scoring dan marketplace. Selain itu Bfarm juga akan berusaha menjalankan program 3H Certification sehingga bisa bermanfaat lebih banyak lagi bagi peternak di Indonesia.

Kiat KoinWorks Mitigasi Risiko Gagal Bayar

Tahun ini industri fintech makin ramai dengan berbagai perbincangan. Salah satunya yang cukup viral adalah penyalahgunaan data konsumen untuk penagihan utang dilakukan oleh RupiahPlus menjadi pelajaran berharga untuk semua pemain fintech lending di Indonesia.

Yang ditonjolkan dari kejadian ini adalah bagaimana kedua belah pihak mengedepankan unsur kepercayaan, baik itu dalam menagih utang, maupun menggunakan data pribadi konsumen. Menariknya layanan peminjaman online mengklaim NPL-nya sangat rendah. Bagaimana sebenarnya cara fintech lending melindungi konsumen? KoinWorks punya jawaban terkait hal ini.

Mitigasi risiko dilakukan baik untuk pendana maupun investor, mengingat KoinWorks hanya fokus memberi pinjaman dana untuk pengusaha UKM online.  Artinya proses awal hingga akhir diselesaikan secara online. Bila tidak ada kebutuhan mendesak, bahkan verifikasi ke toko fisik pun tidak dilakukan.

Oleh karena itu, data yang diambil perusahaan untuk credit scoring secara keseluruhan adalah data digital dengan metode scoring yang berbeda. Lebih menekankan pemanfaatan teknologi yang bisa menggantikan cara konvensional biasa dilakukan oleh bank. Ambil contoh, data online penjualan di platform marketplace yang mereka pakai, riwayat browser, media sosial, dan sebagainya. Seluruh data tersebut diracik untuk menentukan kualitas kredit yang terbagi dari grade A sampai E.

“Kita ambil datanya beda dengan apa yang bisa dilakukan bank, makanya memanfaatkan penuh data digital yang tersebar untuk credit scoring. Terlebih, ada moral hazard apabila UKM online gagal bayar, karena kabar bisa tersebar secara cepat yang tentunya akan mengganggu flow bisnis,” terang CMO KoinWorks Jonathan Bryan.

Terhitung saat ini KoinWorks memiliki 85 ribu pendana dan dua ribu peminjam sejak pertama kali berdiri pada 2016.

Sektor produktif lebih aman

Konsekuensinya karena menggunakan data digital, perusahaan lebih ketat dalam menyaring setiap pengajuan yang masuk. Jonathan mengungkapkan, hingga kini perusahaan telah menerima setidaknya 20 ribu aplikasi, namun yang lolos sekitar dua ribu.

“Karena metode scoring kami berbeda dan sangat hati-hati, jadi apabila ada UKM yang dapat grade E, itu bukan berarti mereka jelek secara pembukuan, mereka pasti bisa bayar tapi ada faktor lain yang membuat grade mereka bisa dapat itu. Grade E di kami itu artinya masih bagus dan layak untuk didanai.”

Secara siklus penyaluran pinjaman, karena fokus ke UKM online saja maka ada pola yang rutin terjadi setiap tahunnya. Siklus pengajuan pinjaman bakal ramai saat acara besar seperti Harbolnas (Hari Belanja Online Nasional), momen Lebaran, dan perayaan ulang tahun masing-masing platform e-commerce. Dalam momen tersebut pengusaha perlu produksi dalam jumlah ekstra untuk investaris, makanya dalam dua sampai tiga bulan sebelum perhelatan digelar mereka mulai persiapan dengan ramai-ramai mengajukan pinjaman.

Ketika dana sudah cair, dana langsung dipakai untuk kegiatan usaha tanpa tercampur untuk kebutuhan pribadi. Setelah momen tersebut sudah dilewati, tren yang biasa terjadi adalah mereka langsung melunasi semua hutangnya sebelum jatuh tempo. Kegiatan ini tidak bisa dilakukan saat mengajukan pinjaman di bank.

“Saat peak time, jumlah pinjaman bisa naik antara 20-30 kali dibanding hari biasa. Itu sudah jadi tren buat UKM online. Saat momen sudah lewat, mereka langsung melunasi, lalu top up lagi. Sekitar 70% dari total peminjam kami itu adalah repetitive borrower.”

Karena alurnya yang sudah rutin terjadi ini, membuat penyaluran kredit ke sektor produktif jauh lebih aman dan berkualitas ketimbang sektor konsumtif. Diklaim KoinWorks dapat menjaga laju kredit macet sampai ke level 0,39%.

Buat dana proteksi

Tak hanya mitigasi risiko untuk peminjam, sambung Jonathan, KoinWorks juga memberlakukan mitigasi ke para pendana. Minimal dana yang bisa diinvestasikan untuk tiap investor sebesar Rp100 ribu. Ini dimaksudkan sebagai ajang untuk memperkenalkan alternatif investasi ke platform p2p lending. Oleh karena itu pihak KoinWorks rutin mengedukasi kepada pendana untuk mendiversifikasikan dananya ke berbagai usaha UKM di berbagai grade. Bisa juga memilih ke KoinPintar untuk bantu pelajar melanjutkan pendidikannya ke jenjang lebih tinggi.

Sebagai cara perlindungan ke pendana, KoinWorks secara khusus menyediakan dana proteksi yang diambil sekitar 30% dari total pendapatan yang diperolehnya. Bila diibaratkan ini seperti cadangan kerugian penurunan nilai (CKPN) yang rutin dilakukan bank dalam mengantisipasi terjadinya kredit macet. Sehingga jika ada kredit macet, KoinWorks bisa menggantikan uang pendana.

“Makanya untuk setiap pendana yang baru mulai investasi di p2p lending, selalu kami beri arahan untuk diversifikasi portofolionya. Kami juga menyiapkan dana proteksi yang diambil dari revenue buat melindungi pendana dari risiko.”

Selain itu, KoinWorks beserta pemain p2p lending lainnya didorong oleh OJK untuk membuat semacam rencana pemulihan atau recovery plan dalam menangkal krisis apabila terjadi risiko yang tidak diinginkan terjadi. Hal ini juga sudah diberlakukan dalam bank. Peraturan untuk membuat rekening bersama (escrow account) demi melindungi uang pendana.

“OJK cukup advance dalam melindungi industri p2p lending. Intensi mereka sangat baik, ingin jaga industri ini tetap aman dan bisa berlangsung dalam jangka waktu lama. Malah kita setiap bulannya dipantau untuk mengirimkan kinerja bisnis, dipanggil rapat apabila ada info terbaru, dan sebagainya,” pungkasnya.